
# MATHEMATICS FOR TECHNOLOGY



Norshahadah Abd Rahman

# MATHEMATICS FOR TECHNOLOGY

# STATISTICS Reference

First Edition

Norshahadah Binti Abd Rahman

**POLITEKNIK SANDAKAN SABAH** 

Published by: Politeknik Sandakan Sabah Educstion Hub, Batu 10. Jalan Sungai Batang, 90000 Sandakan, Sabah https://www.pss.edu.my

First Published 2022

eISBN:

A catalogue record for this ebook is available from the Politeknik Sandakan Website (Penerbitan)

http://www.pss.edu.my/v10/index.php/penerbitan/131-ebooks

All rights reserved. No part of this publication may be reproduced, stored in retrieval system or transmitted in any form or by any means, electronics, mechanical, photocopying, recording or otherwise, without the prior permission in writing from the Publisher

# PREFACE

**Mathematics For Technology : Statistics** is specially written for Semester 1 students who is taking mathematics at local polytechnic. This book complies with the polytechnics syllabus for subject DBM10133 Mathematics for Technology which is one of subject under Mathematics, Science & Computer Department, Politeknik Sandakan Sabah for programme Diploma Aquaculture and Diploma Agrotechnology.

This book is only covered one topic from the syllabus which is Statistic and it was designed as a guide and reference book to deepen students' knowledge and understanding of the statistics topics. This book consists of subtopics Presentation of Statistical Data, Measure of Central Tendency and Dispersion. All notes about Statistic topics are produced in the form of an E-book to make it easier for students to get it. Enforcement exercise are also included in each subtopic.

It is hoped that with the availability of this E-book becomes an additional good reference for polytechnics students and the benefit found therein shared among all.

Norshahadah Abd Rahman

# **TABLE OF CONTENT**

| 1.0   | LEARNING OUTCOME                                | 1  |
|-------|-------------------------------------------------|----|
|       |                                                 |    |
| 1.1   | PRESENTATION OF STATISTICAL DATA                | 2  |
| 1.1.1 | Define Of Statistical Terminology               | 2  |
| 1.1.2 | Presentation Of Ungrouped Data                  | 2  |
| 1.1.3 | Presentation Of Group Data                      | 10 |
|       | Summative Exercise 1                            | 18 |
| 1.2   | MEASURE OF CENTRAL TENDENCY                     | 19 |
| 1.2   | AND DISPERSION                                  | 10 |
| 1.2.1 | Mean, Median And Mode For Ungrouped Data        | 19 |
| 1.2.2 | Mean, Median And Mode For Grouped Data          | 21 |
| 1.2.3 | Median And Mode For Grouped Data By Using Graph | 25 |
| 1.2.4 | Mean Deviation, Variance And Standard Deviation | 29 |
|       | Summative Exercise 1                            | 32 |
|       |                                                 |    |

#### SUMMARY

This topic explains basic terminologies of statistics. Data presentation is made in the form of graphs and frequency distribution tables. Measure of central tendency is determined using formulaic and graphical methods. This topic also discusses the calculation of mean deviation, variance and standard deviation.

### **Learning Outcome:**

The end of this topic, students will able to:

- 1. explain the statistical terminologies
- 2. show the ungrouped data diagrammatically by using pictograph, bar charts and pie chart.
- 3. construct a frequency distribution table and cumulative frequency distribution table.
- 4. draw a histogram, frequency polygon and an ogive.
- 5. calculate the mean, median and mode for grouped and ungrouped data by using formula method.
- 6. find the median and mode for by using graph method.
- 7. calculate the mean deviation, variance and standard deviation for ungrouped and grouped data.

### **1.1 PRESENTATION OF STATISTICAL DATA**

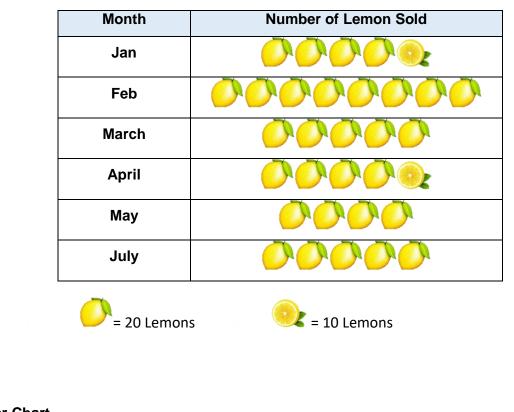
#### 1.1.1 DEFINE OF STATISTICAL TERMINOLOGY

| Terminology               | Definition                                                                                                                                                                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistics                | Collection of methods for collecting, displaying, analysing, and drawing conclusions from data.                                                                                                     |
| Data                      | Collection of facts, such as numbers, words, measurements, observations or even just descriptions of things.                                                                                        |
| Ungrouped Data            | Collection of facts, such as numbers, words, measurements, observations or even just descriptions of things. Data which have not been arranged in a systemic order is called ungrouped or raw data. |
| Grouped Data              | Data is given in intervals.                                                                                                                                                                         |
| Frequency                 | Number of times a particular data point occurs in the set of data.                                                                                                                                  |
| Frequency<br>Distribution | Table that list each data point and its frequency.                                                                                                                                                  |

#### 1.1.2 PRESENTATION OF UNGROUPED DATA

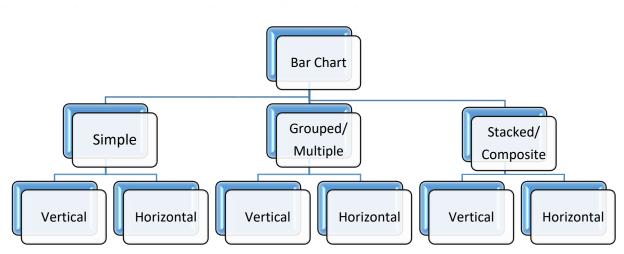
#### A. Pictographs

A Pictograph is a way of showing data using images. Each image stands for a certain number of things.


#### Example 1

The number of lemon sold by Fizi' stall for six month shown as below. Present these data as a pictograph.

| Month | Number of Coconut Sold |
|-------|------------------------|
| Jan   | 90                     |
| Feb   | 160                    |
| March | 120                    |
| April | 90                     |
| Мау   | 60                     |
| July  | 100                    |



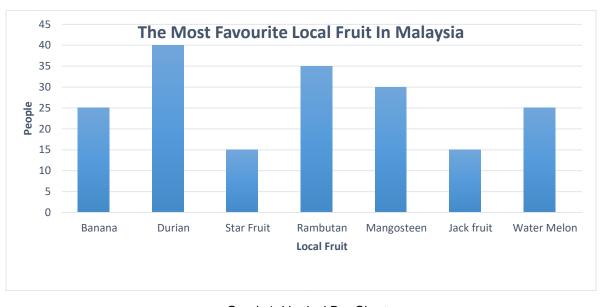

#### Number of Lemon Sold in 6 Month



#### B. Bar Chart

A bar graph is a way of summarizing a set of categorical data. It displays the data using a number of rectangles, of the same width, each of which represents a particular category. Bar graphs can be displayed **horizontally** or **vertically** and they are usually drawn with a gap between the bars (rectangles).




#### C. Simple Bar Chart

#### Example 2

Solution

A survey of 200 people revealed their most favourite local fruits in Malaysia.

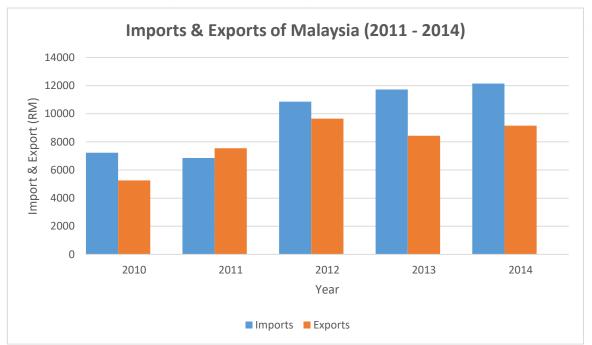
| Fruit  | Banana | Durian | Star Fruit | Rambutan | Mangosteen | Jackfruit | Water Melon |
|--------|--------|--------|------------|----------|------------|-----------|-------------|
| People | 25     | 45     | 15         | 35       | 30         | 15        | 25          |



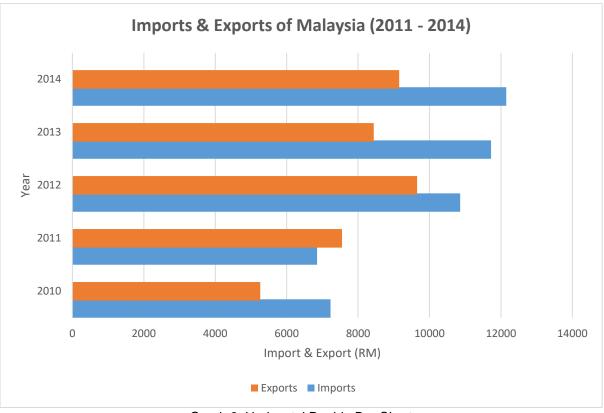
Graph 1: Vertical Bar Chart The Most Favourite Local Fruit In Malaysia Water Melon Jack fruit Mangosteen Local Fruit Rambutan Star Fruit Durian Banana 5 0 10 15 20 25 30 35 40 45 People



#### D. Grouped/ Multiple Bar Chart


A chart depicting two or more characteristics in the form of bars of length proportional in magnitude of the characteristics.

#### Example 3


Draw a multiple bar chart to represent the import and export of Malaysia (values in RM) for the years 2010 to 2014.

| Years | Imports | Exports |
|-------|---------|---------|
| 2010  | 7230    | 5260    |
| 2011  | 6850    | 7550    |
| 2012  | 10860   | 9655    |
| 2013  | 11725   | 8440    |
| 2014  | 12150   | 9150    |

Solution

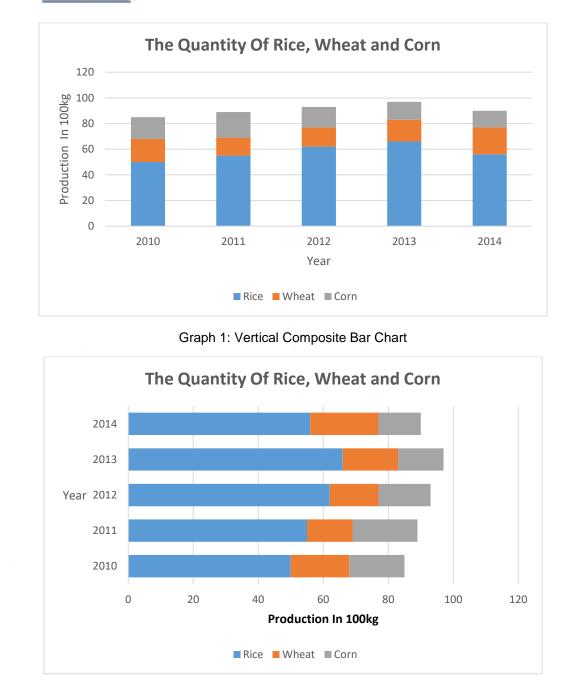


Graph 1: Vertical Double Bar Chart



Graph 2: Horizontal Double Bar Chart

#### E. Stacked/ Composite/ Component Bar Chart


Sub-divided or component bar chart is used to represent data in which the total magnitude is divided into different or components.

#### Example 4

The table bellows shows the quantity in hundred kg of rice, wheat and corn produced on a certain farm during the years 2010 to 2014. Construct a composite bar chart to illustrate the data.

| Years | Rice | Wheat | Corn | Total |
|-------|------|-------|------|-------|
| 2010  | 55   | 20    | 15   | 90    |
| 2011  | 72   | 18    | 15   | 105   |
| 2012  | 62   | 15    | 16   | 93    |
| 2013  | 66   | 17    | 14   | 97    |
| 2014  | 56   | 21    | 13   | 90    |

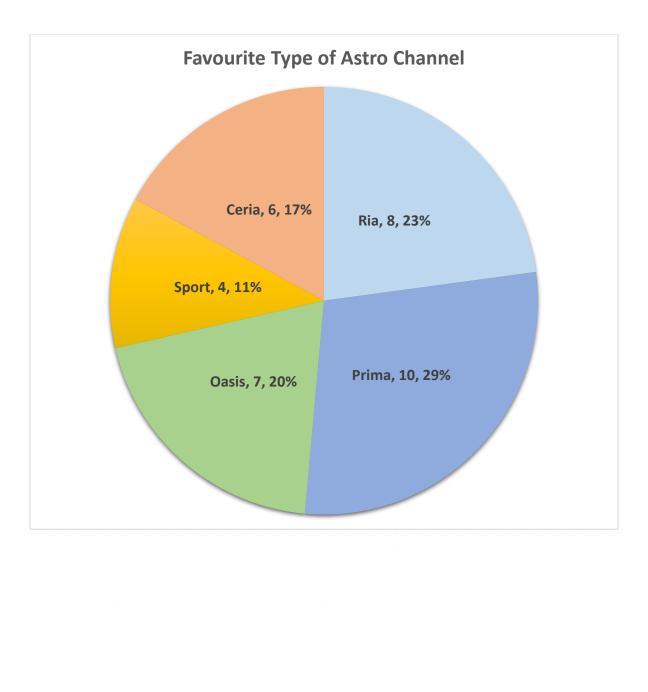
Solution



Graph 2: Horizontal Composite Bar Chart

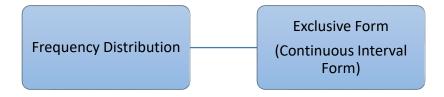
#### F. Pie Chart

A special chart that uses "pie slices" to show relative sizes of data.




Imagine you just did a survey of your friends to find which kind of Astro Channel they liked best. Here are the results:

| Favourite Type of Astro Channel |    |   |   |   |  |  |
|---------------------------------|----|---|---|---|--|--|
| Warna Prima Citra Oasis Naura   |    |   |   |   |  |  |
| 8                               | 10 | 7 | 4 | 6 |  |  |


#### Solution

| Astro Channel | Frequency Percentage (%) |                                 | Degree (∘)                       |
|---------------|--------------------------|---------------------------------|----------------------------------|
| Ria           | 8                        | $\frac{8}{35} \times 100 = 23$  | $\frac{8}{35} \times 360 = 82$   |
| Prima         | 10                       | $\frac{10}{35} \times 100 = 29$ | $\frac{10}{35} \times 360 = 103$ |
| Oasis         | 7                        | $\frac{7}{35} \times 100 = 20$  | $\frac{7}{35} \times 360 = 72$   |
| Sport         | 4                        | $\frac{4}{35} \times 100 = 11$  | $\frac{4}{35} \times 360 = 41$   |
| Ceria         | 6                        | $\frac{6}{35} \times 100 = 17$  | $\frac{6}{35} \times 360 = 62$   |
| Total         | 35                       | 100                             | 360                              |



#### 1.1.3 PRESENTATION OF GROUP DATA

Data presented in the form of frequency distribution is called grouped data.



#### Example 1

Given below are the marks obtained by 40 students in an examination:

| 6  | 50 | 96 | 46 | 34 | 26 | 22 | 18 | 92 | 82 |
|----|----|----|----|----|----|----|----|----|----|
| 74 | 90 | 20 | 38 | 78 | 72 | 68 | 10 | 34 | 42 |
| 78 | 66 | 56 | 50 | 24 | 6  | 16 | 34 | 96 | 68 |
| 30 | 38 | 64 | 64 | 38 | 42 | 56 | 64 | 40 | 46 |

#### Solution

#### A. Discontinuous Interval Form (or Inclusive Form)

| Lower limit | Class<br>Interval | Tally Marks    | Frequency |
|-------------|-------------------|----------------|-----------|
|             | 0 - 20            |                | 5         |
|             | 21 - 40           | ₩₩I            | 11        |
|             | 41 - 60           | <b>↓</b> # III | 9         |
| Upper limit | 61 - 80           | ₩₩             | 10        |
|             | 81 - 100          | #              | 5         |
|             | Total             |                | 40        |

#### Here,

- The class 0 20 means, marks obtained from 0 to 20, i.e., including both.
- So, 21 40 means between 21 and 40 including 21 and 40

#### **B.** Construction of Frequency Distribution

#### Example 2

Construct a frequency distribution with suitable class interval size of marks obtained by 50 students of a class are given below:

| 33 | 60 | 48 | 52 | 73 | 85 | 22 | 43 | 36 | 49 |
|----|----|----|----|----|----|----|----|----|----|
| 45 | 57 | 53 | 62 | 66 | 69 | 74 | 87 | 25 | 31 |
| 61 | 64 | 82 | 78 | 46 | 75 | 62 | 70 | 37 | 44 |
| 57 | 67 | 65 | 68 | 69 | 72 | 61 | 66 | 60 | 51 |
| 67 | 75 | 64 | 53 | 66 | 54 | 40 | 56 | 77 | 63 |

#### Solution

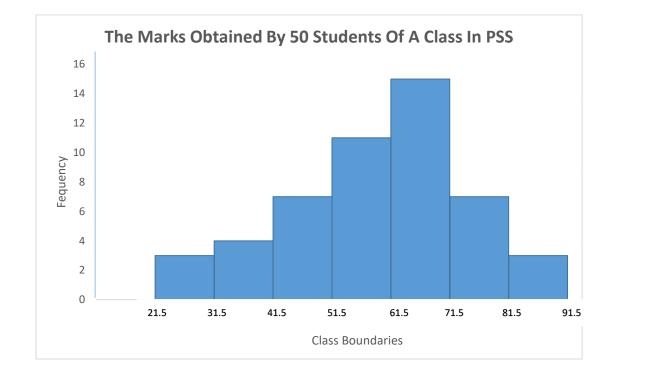
| No | Step                                                                                                                                                         |                                      | Solution                                                                                       |                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1. | Find the data range Range = Largest value – smallest value                                                                                                   | ]                                    | Range = 87 – 22<br>= 65                                                                        |                                                             |
| 2. | Find the number of classes:<br>$K = 1 + 3.3 \log N$                                                                                                          | Where:<br>K=<br>Number<br>of Classes | K = 1 + 3.3 log 50<br>= 6.61<br>= 7                                                            | must be a round<br>number toward<br>Ex: 6.24 = 7<br>5.2 = 6 |
| 3. | N = total number of observations.<br>Find the class width/class size/class interval $Class width = \frac{Data \ range}{Number \ of \ classes}$               |                                      | $Class width = \frac{65}{7}$ $= 9.28$ $= 10$                                                   | 5.8 =6                                                      |
| 4. | Find the class boundaries<br>$     \begin{bmatrix}       Class Boundaries \\       = \frac{Upper limit of a class + lower limit of n}{2}     \end{bmatrix} $ | ext class                            | Ex:<br>Lower Class Boundary<br>$= \frac{31+32}{2}$ Upper Class Boundary<br>$= \frac{41+42}{2}$ | Ex: 6.24 = 7<br>5.2 = 6                                     |

| The smallest<br>value | Class wide<br>10-1 = |           | Class<br>width = 10 |
|-----------------------|----------------------|-----------|---------------------|
| Class Interval        | Tally                | Frequency | Boundaries          |
| 22-31                 | 111                  | 3         | 21.5 – 31.5         |
| 32 – 41               | 1111                 | 4         | 31.5 – 41.5         |
| 42 – 51               | -## I                | 7         | 41.5 – 51.5         |
| 52 – 61               |                      | 11        | 51.5 – 61.5         |
| 62 – 71               | <i>₩₩₩</i>           | 15        | 61.5 – 71.5         |
| 72 – 81               | <b>HIT</b> II        | 7         | 71.5 – 81.5         |
| 82 – 91               | III                  | 3         | 81.5 – 91.5         |
| Total                 |                      | 50        |                     |

#### C. Histogram

A histogram is a graphical display of data using bars of different heights.

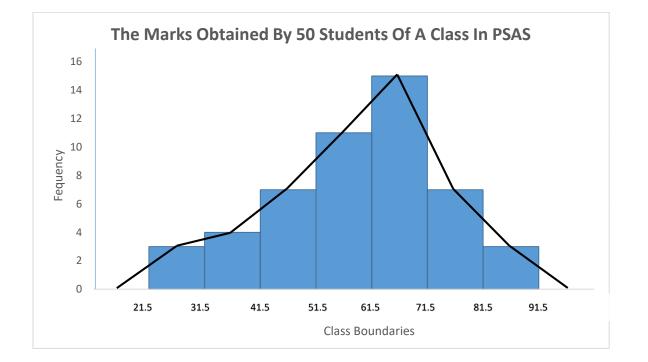
#### Example 3


The table bellows shows the marks obtained by 50 students of a class in PSS.

- i) Built a frequency distribution table
- ii) After that built a histogram

| Class Interval | Frequency |
|----------------|-----------|
| 22 – 31        | 3         |
| 32 – 41        | 4         |
| 42 – 51        | 7         |
| 52 – 61        | 11        |
| 62 – 71        | 15        |
| 72 – 81        | 7         |
| 82 – 91        | 3         |
| Total          | 50        |

#### Solution


| Class Interval | Frequency | Boundaries  |
|----------------|-----------|-------------|
| 22 – 31        | 3         | 21.5 – 31.5 |
| 32 – 41        | 4         | 31.5 – 41.5 |
| 42 – 51        | 7         | 41.5 – 51.5 |
| 52 – 61        | 11        | 51.5 – 61.5 |
| 62 – 71        | 15        | 61.5 – 71.5 |
| 72 – 81        | 7         | 71.5 – 81.5 |
| 82 – 91        | 3         | 81.5 – 91.5 |
| Total          | 50        |             |



#### D. Frequency Polygon

A graph made by joining the middle-top points of the columns of a frequency histogram

| Class Interval | Frequency | Boundaries  | Midpoint |
|----------------|-----------|-------------|----------|
| 22 – 31        | 3         | 21.5 – 31.5 | 26.5     |
| 32 – 41        | 4         | 31.5 – 41.5 | 36.5     |
| 42 – 51        | 7         | 41.5 – 51.5 | 46.5     |
| 52 – 61        | 11        | 51.5 – 61.5 | 56.5     |
| 62 – 71        | 15        | 61.5 – 71.5 | 66.5     |
| 72 – 81        | 7         | 71.5 – 81.5 | 76.5     |
| 82 – 91        | 3         | 81.5 – 91.5 | 86.5     |
| Total          | 50        |             |          |

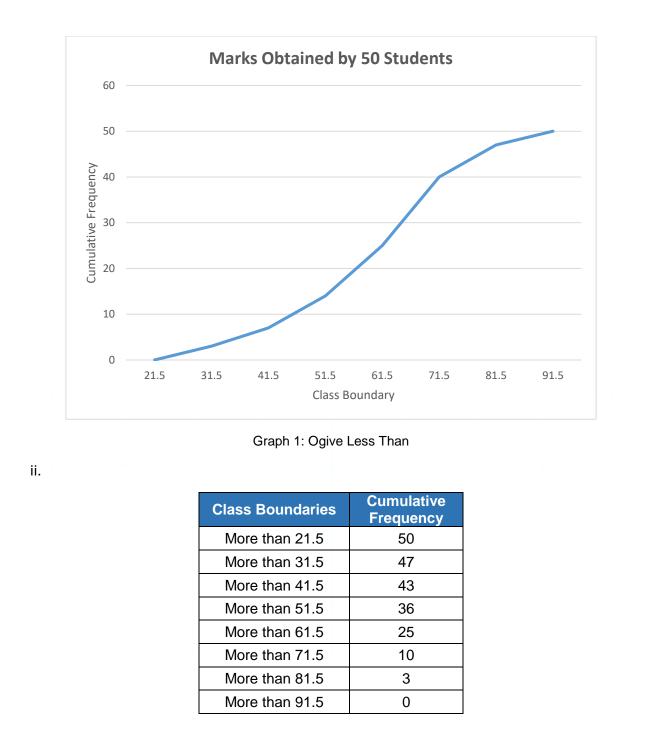


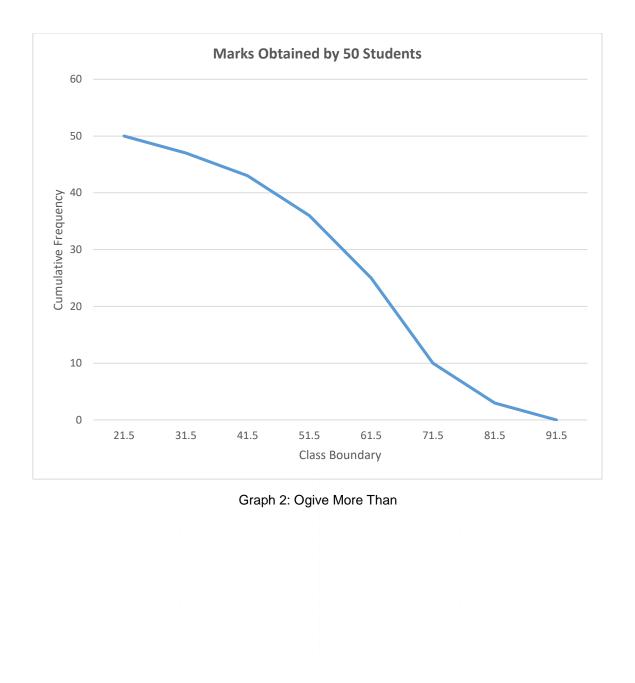
### E. Ogive

Example 4

The following frequency distribution table gives the marks obtained by 50 students.

- i. Draw a less than cumulative frequency distribution ogive curve
- ii. Draw a more than cumulative frequency distribution ogive curve


Midpoint: upper limit +


| Class Interval | Frequency | Boundaries  |
|----------------|-----------|-------------|
| 22 – 31        | 3         | 21.5 – 31.5 |
| 32 – 41        | 4         | 31.5 – 41.5 |
| 42 – 51        | 7         | 41.5 – 51.5 |
| 52 – 61        | 11        | 51.5 – 61.5 |
| 62 – 71        | 15        | 61.5 – 71.5 |
| 72 – 81        | 7         | 71.5 – 81.5 |
| 82 – 91        | 3         | 81.5 – 91.5 |
| Total          | 50        |             |

#### Solution

i.

|   | Class Boundaries | Cumulative<br>Frequency |
|---|------------------|-------------------------|
|   | Less than 21.5   | 0                       |
|   | Less than 31.5   | 3                       |
|   | Less than 41.5   | 7                       |
|   | Less than 51.5   | 14                      |
|   | Less than 61.5   | 25                      |
| ſ | Less than 71.5   | 40                      |
|   | Less than 81.5   | 47                      |
|   | Less than 91.5   | 50                      |





## SUMMATIVE EXERCISE

#### **Question 1**

The number of low cost houses built by a developer in five projects are given in the table below. By using the symbol  $\bigcirc$  to represent 50 low cost houses, construct a pictograph for the data.

| Project 1 | Project 2 | Project 3 | Project 4 | Project 5 |
|-----------|-----------|-----------|-----------|-----------|
| 350       | 400       | 500       | 300       | 250       |

#### Question 2

The number of people who have donated blood in a blood donation campaign for four days are given in the table below. By using the symbol 😳 to represent 30 donors, construct a pictograph for the data.

| Day       | Number of Blood Donors |
|-----------|------------------------|
| Monday    | 150                    |
| Tuesday   | 120                    |
| Wednesday | 210                    |
| Thursday  | 60                     |

#### **Question 3**

The table below shows the number of candidate who passes in driving test conducted by a driving school for the first four months of 2020. By using suitable scales, construct a vertical bar chart to represent the data.

| _ | Month     | January | February | March | April |
|---|-----------|---------|----------|-------|-------|
|   | Number of | 50      | 30       | 35    | 40    |
|   | Candidate | 50      | 50       |       | 40    |

#### **Question 4**

The table below shows the sales of five type of books in a bookstore in a certain day. Based on the data, construct a pie chart to represent the data.

| Book       | Number of Book |
|------------|----------------|
| Science    | 12             |
| Management | 33             |
| Education  | 16             |
| Decoration | 33             |
| Novel      | 34             |

## 1.2 MEASURE OF CENTRAL TENDENCY AND DISPERSION

#### **Measure of Central Tendency**

- Single value or a category of items that is used to represent a set of data. It is used to determine the central value of a set of data.
- There important type of measure of central tendency are the mean, median and mode.

**Mean** : the **average value** of a set of data that is obtained by dividing the sum of all the values of data by the number of data

- **Median** : **middle value** of a set of data that has been arranged in an ascending order.
- Mode : the value or a category of items that occurs most frequently in a set of data.

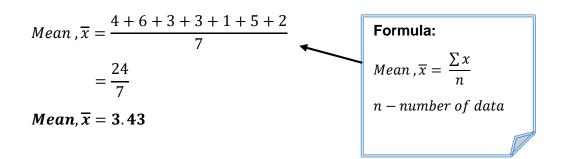
#### **Measure of Central Dispersion**

- Measure of dispersion describe how the values of data spread out in a set of data.
- Mean deviation, variance and standard deviation are commonly used to measure the dispersion of a set of data.

#### **1.2.1** MEAN, MEDIAN AND MODE FOR UNGROUPED DATA

#### **Ungrouped Data Without A Frequency Table**

The masses of ten students, in kg, are 45, 60, 55, 47, 48, 52, 65, 64, 48 and 52.

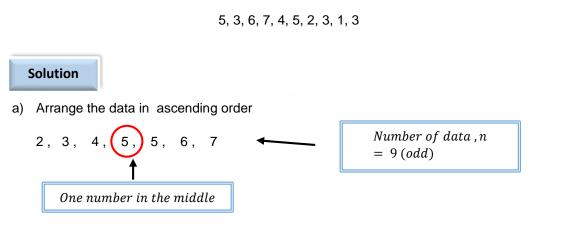

#### A. Mean (Ungrouped data without frequency)

Example 1

#### 4, 6, 3, 3, 1, 5, 2

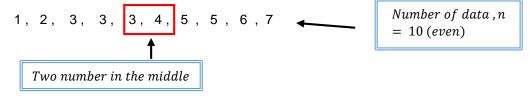
The data above shows the number of books read by a group of students in a year. Calculate the mean number of books read by the students in a year.

#### Solution




#### B. Median

Example 2


a) The data below shows the distances in km, of the houses of 7 students from their faculty. Find the median.

b) The data below shows the distances in km, of the houses of 10 students from their faculty.
 Find the median.





b) Arrange the data in ascending order



$$Median = \frac{3+4}{2}$$
$$Median = 3.5$$

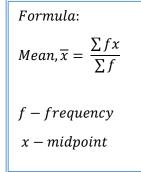
#### C. Mode

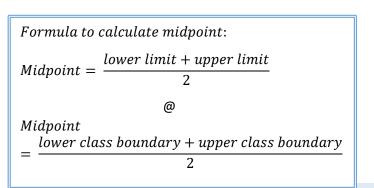
#### Example 3

a) The data below shows the distances in km, of the houses of 7 students from their faculty. Find the mode of distance.

5, 3, 6, 7, 4, 5, 2

b) The data below shows the distances in km, of the houses of 10 students from their faculty.
 Find the mode of distance.


c) The data below shows the distances in km, of the houses of 10 students from their faculty. Find the mode of distance.


|          | 5, 3, 6, 7, 4, 5, 2, 3,                                   | 1                          |
|----------|-----------------------------------------------------------|----------------------------|
| Solution |                                                           |                            |
| a)       | 5, 3, 6, 7, 4, 5, 2                                       | Mode = No mode             |
| b)       | 5, <u>3</u> , 6, 7, 4, <u>3</u> , 2, <u>3</u> , 1, 3      | Mode = 3                   |
| c)       | <u>5</u> , <u>3</u> , 6, 7, 4, <u>5</u> , 2, <u>3</u> , 1 | Mode = 3 and 5 (multimode) |

#### 1.2.2

#### MEAN, MEDIAN AND MODE FOR GROUPED DATA

#### A. Mean





#### Example 1

The table below shows the distance, in km, between a group of students' house and their school. Based on the table, calculate the mean, median and mode for the distance.

| Distance (km) | Number of Students |
|---------------|--------------------|
| 1-2           | 6                  |
| 3-4           | 5                  |
| 5 – 6         | 7                  |
| 7-8           | 3                  |
| 9-10          | 4                  |

#### Solution

| Distance | Number of Students, | Midpoint, | fx                |
|----------|---------------------|-----------|-------------------|
| (km)     | f                   | x         |                   |
| 1 – 2    | 6                   | 1.5       | 9                 |
| 3 – 4    | 5                   | 3.5       | 17.5              |
| 5 – 6    | 7                   | 5.5       | 38.5              |
| 7 – 8    | 3                   | 7.5       | 22.5              |
| 9 - 10   | 4                   | 9.5       | 38                |
|          | $\sum f = 25$       |           | $\sum fx = 125.5$ |

*Mean*, 
$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{125.5}{25} = 5.02$$

#### B. Median

Example 2

Formula: Median, =  $L + \left[\frac{\sum f}{2} - F}{f_m}\right]c$ 

$$L$$
 – Lower boundary for median class  
 $\sum f$  – sum of frequency  
 $F$  – Cumulative frequency before median class  
 $f_m$  – frequency for the median class  
 $c$  – size of the median class (upper boundary  
– lower boundary)

#### Solution

Find the median class:

1. Calculate the 
$$\frac{\sum j}{2}$$

$$\frac{\Sigma f}{2} = \frac{25}{2} = 12.5 \longleftarrow$$

refer to the cumulative frequency column to determine median class

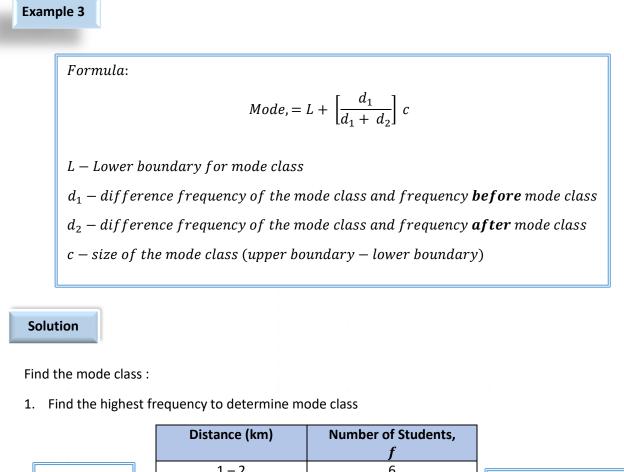
2. Insert Cumulative Frequency column

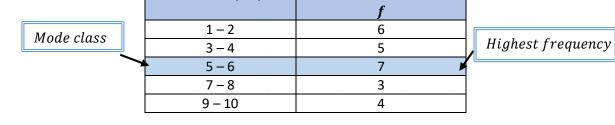
| Median class | Distance (km) | Number of<br>Students,<br><i>f</i> | Cumulative<br>Frequency,<br>F |      |
|--------------|---------------|------------------------------------|-------------------------------|------|
|              | 1-2           | 6                                  | 6                             | 12.5 |
|              | 3 – 4         | 5                                  | 11                            |      |
|              | 5 – 6         | 7                                  | 18                            | -    |
|              | 7 – 8         | 3                                  | 21                            |      |
|              | 9 - 10        | 4                                  | 25                            | ]    |

*Median class* => 5-6

L – Lower boundary for median class = 4.5

 $\sum f$  – sum of frequency = **25** 


F – Cumulative frequency before median class = **11** 


 $f_m$  – frequency for the median class = 7

c - size of the median class (upper boundary - lower boundary) = 6.5 - 4.5 = 2

$$Median = 4.5 + \left[\frac{\frac{25}{2} - 11}{7}\right] 2$$
$$= 4.9$$

#### C. Mode





Mode class = 5 - 6

L – Lower boundary for mode class = 4.5

 $d_1$  – difference frequency of the mode class and frequency before mode class

= 7 - 5 = 2

 $d_2$  – difference frequency of the mode class and frequency after mode clas = 7 – 3 = 4

c - size of the mode class (upper boundary - lower boundary) = 6.5 - 4.5= 2

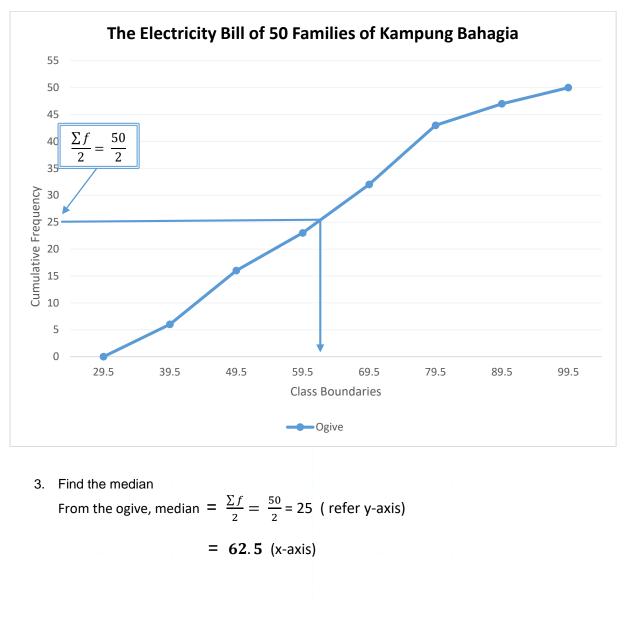
$$Mode = 4.5 + \left[\frac{2}{2+4}\right] 2$$
  
= 5.17

#### **1.2.3 MEDIAN AND MODE FOR GROUPED DATA BY USING GRAPH**

#### A. Median (Ogive)

#### Example 1

The table below shows the electricity bill of 50 families of Kampung Bahagia in certain month. From the data, find the median without using any formula.


| Electricity Bill (RM) | Number of Families |
|-----------------------|--------------------|
| 30 – 39               | 6                  |
| 40 - 49               | 10                 |
| 50 – 59               | 7                  |
| 60 - 69               | 9                  |
| 70 – 79               | 11                 |
| 80 - 89               | 4                  |
| 90 – 99               | 3                  |

#### Solution

1. Construct a cumulative frequency table (less than)

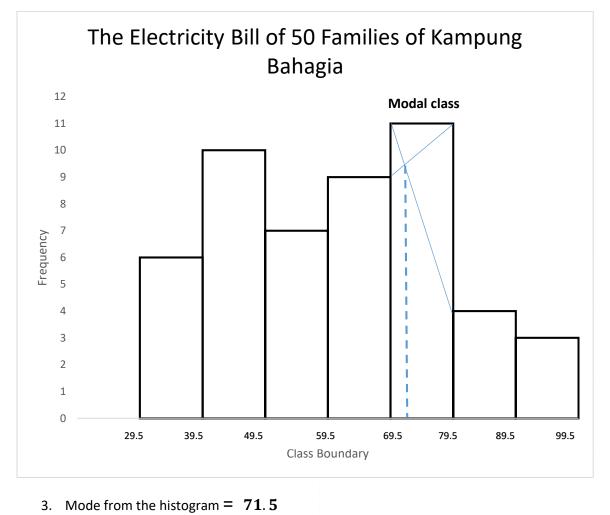
| Electricity Bill (RM) | Number of Families,<br><i>f</i> | Cumulative<br>Frequency,<br>F |
|-----------------------|---------------------------------|-------------------------------|
| 29.5                  | 0                               | 0                             |
| 39.5                  | 6                               | 6                             |
| 49.5                  | 10                              | 16                            |
| 59.5                  | 7                               | 23                            |
| 69.5                  | 9                               | 32                            |
| 79.5                  | 11                              | 43                            |
| 89.5                  | 4                               | 47                            |
| 99.5                  | 3                               | 50                            |

#### 2. Draw an ogive



#### B. Mode (Histogram)

#### Example 2


The table below shows the electricity bill of 50 families of Kampung Bahagia in certain month. From the data, find the mode without using any formula.

| Electricity Bill (RM) | Number of Families |
|-----------------------|--------------------|
| 30 – 39               | 6                  |
| 40 – 49               | 10                 |
| 50 – 59               | 7                  |
| 60 – 69               | 9                  |
| 70 – 79               | 11                 |
| 80 – 89               | 4                  |
| 90 – 99               | 3                  |

#### Solution

1. Add class boundary column

| Electricity Bill (RM) | Number of<br>Families, f | Class<br>Boundary |
|-----------------------|--------------------------|-------------------|
| 30 – 39               | 6                        | 29.5 – 39.5       |
| 40 - 49               | 10                       | 39.5 – 49.5       |
| 50 – 59               | 7                        | 49.5 – 59.5       |
| 60 – 69               | 9                        | 59.5 – 69.5       |
| 70 – 79               | 11                       | 69.5 – 79.5       |
| 80 - 89               | 4                        | 79.5 – 89.5       |
| 90 – 99               | 3                        | 89.5 – 99.5       |



2. Find the modal class from the histogram

#### **1.2.4** MEAN DEVIATION, VARIANCE AND STANDARD DEVIATION

#### A. Ungrouped Data

#### Mean Deviation, Variance and Standard Deviation

Example 1

#### 4, 2, 3, 5, 7

|4 - 4.2| = 0.2

The data above shows the ages, in years, of 5 children who have received medical treatment in a hospital. Calculate the mean deviation, variance and standard deviation.

Solution

1. Find the mean,  $\overline{x}$ 

Mean, 
$$\overline{x} = \frac{\sum x}{n} = \frac{4+2+3+5+7}{5} = \frac{21}{5} = 4.2$$

2. Construct a table

| ла |               |                                                           |                                      |                       |
|----|---------------|-----------------------------------------------------------|--------------------------------------|-----------------------|
|    | Age, x        | $ x-\overline{x} $                                        | $(x-\overline{x})^2$                 |                       |
|    | 4             | 0.2                                                       | 0.04 🗲                               | $(4-4.2)^2$<br>= 0.04 |
|    | 2             | 2.2                                                       | 4.84                                 | = 0.04                |
|    | 3             | 1.2                                                       | 1.44                                 |                       |
|    | 5             | 0.8                                                       | 0.64                                 |                       |
|    | 7             | 2.8                                                       | 7.84                                 |                       |
|    | $\sum x = 21$ | $\sum  \boldsymbol{x} - \overline{\boldsymbol{x}}  = 7.2$ | $\sum_{x=14.8} (x - \overline{x})^2$ |                       |

3. Formula and Solution

| Mean           | Formula                                                                                                               | Solution                                                                                                      |
|----------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Mean Deviation | Mean Deviation, E<br>$= \frac{\sum  x - \overline{x} }{n}$ $x - data \qquad \overline{x} - mean$ $n - number of data$ | $n = 5$ , $\sum  x - \overline{x}  = 7.2$ ,<br>$E = \frac{\sum  x - \overline{x} }{n} = \frac{7.2}{5} = 1.44$ |
| Variance       | $S^2 = \frac{\sum (x-x)^2}{n}$                                                                                        | $n = 5$ , $\sum (x - x)^2 = 14.8$ ,                                                                           |

|                    | $\begin{array}{cc} x - data & \overline{x} - mean \\ n - number of data \end{array}$ | $S^2 = \frac{\sum (x - \overline{x})^2}{n}$ |
|--------------------|--------------------------------------------------------------------------------------|---------------------------------------------|
|                    |                                                                                      | $S^2 = \frac{14.8}{5} = 2.96$               |
| Standard Deviation | $S = \sqrt{Variance}$                                                                | $S = \sqrt{Variance}$                       |
|                    |                                                                                      | $S = \sqrt{2.96} = 1.72$                    |

#### **B.** Grouped Data

#### Mean Deviation, Variance and Standard Deviation

#### Example 1

The following frequency table shows the speed of 25 vehicles recorded by traffic officer in an operation.

| Number of cars |
|----------------|
| 1              |
| 2              |
| 6              |
| 5              |
| 7              |
| 4              |
|                |

Solution

| Speed (km h <sup>-1</sup> ) | Number<br>of cars,<br>f  | x  | fx                 | <i>x</i> – <i>x</i> | x-x f                                  | $(x - x)^2$ | $(x-x)^2 f$                          |
|-----------------------------|--------------------------|----|--------------------|---------------------|----------------------------------------|-------------|--------------------------------------|
| 61 – 65                     | 1                        | 63 | 63                 | 15.4                | 15.4                                   | 237.16      | 237.16                               |
| 66 – 70                     | 2                        | 68 | 136                | 10.4                | 20.8                                   | 108.16      | 216.32                               |
| 71 – 75                     | 6                        | 73 | 438                | 5.4                 | 32.4                                   | 29.16       | 174.96                               |
| 76 – 80                     | 5                        | 78 | 390                | 0.4                 | 2                                      | 0.16        | 0.8                                  |
| 81 – 85                     | 7                        | 83 | 581                | 4.6                 | 32.2                                   | 21.16       | 148.12                               |
| 86 – 90                     | 4                        | 88 | 352                | 9.6                 | 38.4                                   | 92.16       | 368.64                               |
|                             | $\sum_{n=25}^{\infty} f$ |    | $\sum_{x=1960} fx$ |                     | $\sum_{x=141.20}  x - \overline{x}  f$ |             | $\sum_{x=1146} (x-\overline{x})^2 f$ |

1. Find the mean,  $\overline{x}$ 

*Mean*, 
$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{1960}{25} = 78.4$$

Formula:  $Mean \ Deviation, E = \frac{\sum |x - \overline{x}| \ f}{\sum f}$ x - midpoint  $\overline{x} - mean$  f - frequencyFormula: *Variance*,  $S^2 = \frac{\sum (x - \overline{x})^2 f}{\sum f}$ x - midpoint  $\overline{x} - mean$  f - frequencyFormula: Standard Deviation,  $S = \sqrt{Variance}$ *Mean Deviation,*  $E = \frac{\sum |x - \overline{x}| f}{\sum f} = \frac{141.20}{25} = 5.65$ *Variance*,  $S^2 = \frac{\sum (x - \overline{x})^2 f}{\sum f} = \frac{1146}{25} = 45.84$ Standard Deviation,  $S = \sqrt{Variance} = \sqrt{45.84} = 6.77$ 

# SUMMATIVE EXERCISE 2

#### Question 1

The data below shows the highest temperature being recorded in a Sandakan city in the month of July. Construct a frequency distribution table for data.

| 27 | 24 | 30 | 34 | 21 | 28 | 31 | 34 | 25 | 35 |
|----|----|----|----|----|----|----|----|----|----|
| 33 | 37 | 28 | 22 | 24 | 40 | 30 | 37 | 34 | 31 |
| 36 | 21 | 27 | 30 | 34 | 37 | 23 | 32 | 35 | 29 |

#### **Question 2**

The information below refers to the diameters of reel of wire is measured in 50 places. Construct a frequency distribution table for data using 6 classess. Draw a historam and frequency polygon.

|                                                                   |                                                                                    | 22      | 10    | 90 | 25 | 23       | 25          | 41 | 12 | 20 | 41 |    |    |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|-------|----|----|----------|-------------|----|----|----|----|----|----|
|                                                                   |                                                                                    | 89      | 13    | 66 | 32 | 47       | 33          | 52 | 65 | 65 | 47 |    |    |
|                                                                   |                                                                                    | 88      | 13    | 71 | 90 | 37       | 81          | 53 | 55 | 64 | 50 |    |    |
|                                                                   |                                                                                    | 19      | 90    | 72 | 44 | 57       | 73          | 53 | 45 | 30 | 11 |    |    |
|                                                                   |                                                                                    | 17      | 87    | 70 | 40 | 67       | 80          | 11 | 34 | 15 | 14 |    |    |
| Que                                                               | stion 3                                                                            | 5       |       |    |    |          |             |    |    |    |    |    |    |
| The age of signer of declaration of independence are shown below. |                                                                                    |         |       |    |    |          |             |    |    |    |    |    |    |
|                                                                   | a. Construct a frequency table for the data                                        |         |       |    |    |          |             |    |    |    |    |    |    |
|                                                                   | <ul> <li>b. Construct a histogram and frequen</li> <li>c. Draw an ogive</li> </ul> |         |       |    |    | lency po | icy polygon |    |    |    |    |    |    |
|                                                                   | 0.                                                                                 | Draw an | 05110 |    |    |          |             |    |    |    |    |    |    |
|                                                                   |                                                                                    | 41      | 54    | 47 | 40 | 39       | 35          | 50 | 37 | 49 | 42 | 70 | 32 |
|                                                                   |                                                                                    | 44      | 52    | 39 | 50 | 40       | 30          | 34 | 69 | 39 | 45 | 33 | 42 |
|                                                                   |                                                                                    | 44      | 63    | 60 | 27 | 42       | 34          | 50 | 42 | 52 | 38 | 36 | 45 |
|                                                                   |                                                                                    | 35      | 43    | 48 | 46 | 31       | 27          | 55 | 63 | 46 | 33 | 60 | 62 |
|                                                                   |                                                                                    | 35      | 46    | 45 | 34 | 53       | 50          | 50 |    |    |    |    |    |
|                                                                   |                                                                                    |         |       |    |    |          |             |    |    |    |    |    |    |

#### **Question 4**

Find the mean, median and mode for the following set of data

#### **Question 5**

Given the following set of data:

5, 7, 3, 12, 6, 7, 7, 2

Find the mean, median and mode

#### **Question 6**

The time taken (in minute) by 16 students to answer Mathematics question given by their lecturer as assignment in the class is given as follows. Find the mean, median and mode.

| Time Taken | Frequency |
|------------|-----------|
| 6 - 8      | 3         |
| 9-11       | 2         |
| 12 – 14    | 6         |
| 15 – 17    | 4         |
| 18 – 20    | 1         |

#### **Question 7**

Based on the following data, constructing an ogive. Hence, determine the median.

| Length (cm) | Frequency |
|-------------|-----------|
| 5 – 7       | 3         |
| 8 - 10      | 6         |
| 11 - 13     | 8         |
| 14 – 16     | 7         |
| 17 – 19     | 3         |
| 20 – 22     | 1         |
| 23 – 25     | 2         |
|             |           |

#### **Question 8**

The length of 60 pencil water colour supply by an art teacher are shown in the table below. Construct a histogram for the above data and estimate the mode from the histogram.

| Length (mm) | Frequency |
|-------------|-----------|
| 80 – 99     | 12        |
| 100 - 119   | 10        |
| 120 – 139   | 16        |
| 140 – 159   | 14        |
| 160 – 179   | 8         |

#### **Question 9**

Find the mean deviation, variance and standard deviation of the following data.

8, 3, 4, 6, 1, 2, 3

#### Question 10

Calculate the mean deviation, variance and standard deviation.

| Marks   | Trainees |
|---------|----------|
| 6-10    | 8        |
| 11 – 15 | 9        |
| 16 – 20 | 5        |
| 21 – 25 | 6        |
| 26 – 30 | 2        |

### REFERENCE

Faizah Omar, Lau Too Kya, Phang Yook Ngor and Zainudin Awang (2011). Oxford Fajar Polytechnics Series Statistics Second Edition. Shah Alam: Oxford Fajar Sdn. Bhd.

Lee Beng Hin, Lee Khaik Yong and Rohana Ismail (2011). Q & A Matriculation Mathematics Semester 2 Updated. Shah Alam: Oxford Fajar Sdn. Bhd.



# MATHEMATICS FOR TECHNOLOGY STATISTICS Reference First Edition

This book is written mainly for the students pursuing Diploma Agrotechnology and Diploma Aquaculture for Malaysian Polytechnics. It covers vital area of statistics ranging from data presentation, measure of central tendency and measure of dispersion.

Politeknik Sandakan Sabah Education Hub, Batu 10, Jalan Sungai Batang, 90000 Sandakan Sabah Tel: 089-228351 Fax: 089-228325 http://www.pss.edu.my